Reflectionless Analytic Difference Operators (A∆Os): Examples, Open Questions and Conjectures
نویسنده
چکیده
We present a scenario concerning the existence of a large class of reflectionless selfadjoint analytic difference operators. In order to exemplify this scenario, we summarize our results on reflectionless self-adjoint difference operators of relativistic CalogeroMoser type.
منابع مشابه
Reflectionless Analytic Difference Operators I. Algebraic Framework
We introduce and study a class of analytic difference operators admitting reflectionless eigenfunctions. Our construction of the class is patterned after the Inverse Scattering Transform for the reflectionless self-adjoint Schrödinger and Jacobi operators corresponding to KdV and Toda lattice solitons.
متن کاملReflectionless Analytic Difference Operators III. Hilbert Space Aspects
In the previous two parts of this series of papers, we introduced and studied a large class of analytic difference operators admitting reflectionless eigenfunctions, focusing on algebraic and function-theoretic features in the first part, and on connections with solitons in the second one. In this third part we study our difference operators from a quantum mechanical viewpoint. We show in parti...
متن کاملA Nonlocal Kac-van Moerbeke Equation Admitting N-Soliton Solutions
Using our previous work on reflectionless analytic difference operators and a nonlocal Toda equation, we introduce analytic versions of the Volterra and Kac-van Moerbeke lattice equations. The real-valued N -soliton solutions to our nonlocal equations correspond to self-adjoint reflectionless analytic difference operators with N bound states. A suitable scaling limit gives rise to the N -solito...
متن کاملReflectionless Analytic Difference Operators II. Relations to Soliton Systems
This is the second part of a series of papers dealing with an extensive class of analytic difference operators admitting reflectionless eigenfunctions. In the first part, the pertinent difference operators and their reflectionless eigenfunctions are constructed from given “spectral data”, in analogy with the IST for reflectionless Schrödinger and Jacobi operators. In the present paper, we intro...
متن کاملSpectral Properties of a Class of Reflectionless Schrödinger Operators
We prove that one-dimensional reflectionless Schrödinger operators with spectrum a homogeneous set in the sense of Carleson, belonging to the class introduced by Sodin and Yuditskii, have purely absolutely continuous spectra. This class includes all earlier examples of reflectionless almost periodic Schrödinger operators. In addition, we construct examples of reflectionless Schrödinger operator...
متن کامل